Germanium-Silicon Separate Absorption and Multiplication Avalanche Photodetectors Fabricated with Low Temperature High Density Plasma Chemical Vapor Deposited Germanium

Author:

Carroll Malcolm,Childs Kent,Serkland Darwin,Jarecki Robert,Bauer Todd,Saiz Kevin

Abstract

AbstractA desire to monolithically integrate near infrared (NIR) detectors with silicon complementary metal oxide semiconductor (CMOS) technology has motivated many investigations of single crystal germanium on silicon (Ge/Si) diodes [1-3]. Reduction of the epitaxy thermal budget below the typical chemical vapor deposition (CVD) in-situ clean temperature (Tin-situ clean > 780°C) is also increasingly desired to reduce integration complexity. Reduced temperature growth approaches have included p+-Ge/n-Si detectors formed with low temperature poly-Ge (e-beam evaporation) or heavily dislocated single crystal germanium (molecular beam epitaxy, T ~ 450°C), which have had dark currents of ~5 mA/cm2 and responsivities of ~15 mA/W at 1310 nm, despite the large number of defects in and at the Ge/Si interface. Responsivities in these materials are however low and believed to be limited by a small diffusion length (i.e., 5-30 nm [2, 4]) due to fast electron recombination in the defect rich germanium. In this paper, we evaluate a commercially available high density plasma chemical vapor deposition (HDP-CVD) process to grow low temperature (i.e., Tin-situ & Tepitaxy < ~450°C) germanium epitaxy for a p+-Ge/p-Si/n+-Si NIR separate absorption and multiplication avalanche photodetectors (SAM-APD). This device structure is of interest both to examine ways to enhance the responsivity with internal gain as well as to examine alternatives to InGaAs-InP structures for NIR Geiger mode (GM) detection. A silicon avalanche region is highly desirable for GM to reduce after-pulsing effects, which are related to defect density that are smaller in Si than in InP [5]. Despite the high defect densities in the Ge and at the interface, the Ge-Si APDs in this work are found to have relatively low dark count rates in Geiger mode.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3