Abstract
ABSTRACTWe have applied the modulated photocurrent (MPC) method over a wide range of frequencies (5Hz-100kHz) and temperatures (120K-380K) to assess its ability to accurately deduce the mobility gap distribution in a-Si:H. We have also investigated the effects of moving both the Fermi level within some samples (by light soaking and partial annealing) and the quasi-Fermi level (by applying the bias light) to observe how such changes influence the deduced density of states (DOS). We then compared the MPC results directly with the DOS determined by junction capacitance measurements in the same sample devices. We have determined general conditions under which, we believe, the MPC results provide an accurate picture of the gap state distribution. However, we found that under other conditions, the appearance of the deep defect peaks and other features do not represent the actual defect distribution but, rather, are artifacts due to recombination processes.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献