A Unified Approach to Grain Boundary Diffusion and Nucleation in Thin Film Reactions

Author:

Coffey K. R.,Barmak K.

Abstract

ABSTRACTAn alternative model is proposed to extend the conventional view of diffusion under a concentration gradient in a grain boundary phase of width δ. The conventional model is well developed and readily applied to the thickening kinetics of polycrystalline product phases in binary diffusion couples, however it is not readily extended to other phenomena of interest in thin films, i.e., the nucleation and growth of the product phase crystallites prior to formation of a product phase layer. In the alternative model presented here, non-equilibrium thermodynamics is used to define the chemical potentials, μi, for each atomic specie in the grain and interphase boundaries of a polycrystalline diffusion couple. The chemical potential difference for each specie between the bulk phases of the diffusion couple is partitioned between the driving force for grain boundary diffusion and that for interfacial reaction. This partition leads to a characteristic decay length that describes the spatial variation of μi. Numerical calculations of μi are used to show that boundary diffusion favors heterogeneous nucleation. Product nucleation in thin film reactions is seen to be similar to precipitation from a bulk solid solution.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3