Grain Boundary Diffusion Controlled Precipitation as a Model For thin Film Reactions

Author:

Barmak K.,Coffey K.K.

Abstract

ABSTRACTIn order to arrive at a model for nucleation in the reaction of polycrystalline thin films, we have made use of a transport model that combines atom transport across interface reaction barriers with transport along grain boundaries. Through this transport model, the boundary chemical potential, μIi, and a characteristic length Li for each specie are defined. Li and the ratio of grain size to Li determine the spatial variation and the time evolution of the boundary chemical potential respectively. Nucleation of the product phase is modeled as a process whose driving force is determined by these position dependent (and time dependent) boundary chemical potentials. Thus thin film reactions become similar to precipitation from bulk homogeneous supersaturated solid solutions. Numerical calculations, however, show that boundary diffusion results in low “effective” driving forces for nucleation which can lead to heterogeneous nucleation of even the first phase. The model provides a new approach to phase selection by re-evaluation of the driving force and considers the effect of product and reactant grain structure to be fundamental to the reaction process.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3