Grain Boundary Location-Controlled Polt-Si Films for Tft Devices Obtained Via Novel Excimer Laser Process

Author:

Kim H. J.,Im James S.

Abstract

ABSTRACTBased on a previously acquired physical understanding of the excimer-laser-induced crystallization process, we have developed a new crystallization technique that produces controlled microstructures and possesses a wide processing window. A patterned oxide capping layer was used as an antireflective coating to induce complete melting of an Si film under an SiO2 pattern, and partial melting of the Si film in the areas not under the capping layer—allowing controlled super lateral growth to proceed from the incompletely melted portion of the film to the completely melted portion. For the simple stripes used in this investigation, when the width of the completely molten region is less than a critical distance (above which nucleation of solids occurs in the middle of the completely melted regions), the resulting microstructure has large and elongated grains with one precisely located grain boundary running parallel to the stripe In the middle of the oxide capped region.Arrangement of TFT devices on the resulting Grain boundary Location-Controlled (GLC) Si films with one (or zero) grain boundaries located perpendicular to the flow of electrons within the active channel portion of the TFT devices is illustrated. Such devices are expected to possess performance and uniformity characteristics that are superior to currently available poly-Si TFT devices.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3