Author:
Bracht H.,Haller E. E.,Eberl K.,Cardona M.,Clark-Phelps R.
Abstract
ABSTRACTWe report self-diffusion studies of silicon between 855 and 1388°C in highly enriched epitaxial 28Si layers. Diffusion profiles of 30Si and 29Si are determined with high resolution secondary ion mass spectrometry (SIMS). The temperature dependence of the Si self-diffusion coefficients is accurately described with an activation enthalpy of 4.76 eV and a pre-exponential factor of 560 cm2s-1. The single activation enthalpy indicates that Si self-interstitials dominate self-diffusion over the whole temperature range investigated. Self- and interdiffusion in buried Al71GaAs/Al69GaAs/71GaAs isotope heterostructures with different Al composition is measured between 800 and 1160°C. Ga self-diffusion in AlGaAs and interdiffusion of Al and Ga at the AlGaAs/GaAs interface show that Ga diffusion decreases with increasing Al composition and that the interdiffusion coefficient depends linearly on Al concentration. Furthermore Al is found to diffuse more rapidly into GaAs than Ga diffuses in GaAs. The temperature dependence of Ga and Al diffusion in GaAs and of Ga diffusion in AlGaAs is described by a single activation enthalpy in the range of 3.6±0.1 eV, but by different pre-exponential factors. Differences found for Ga and Al diffusion in GaAs and for Ga diffusion in AlGaAs with different Al concentrations are discussed.
Publisher
Springer Science and Business Media LLC
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献