Author:
Pathak S.K.,Babu N.H.,Shi Y.H.,Dennis A.R.,Strasik M.,Cardwell D.A.
Abstract
Y2Ba4CuNbO12 (Y-24Nb1) and silver (Ag) are recognized as potential candidates for improving both flux pinning and the mechanical properties of bulk rare earth (RE)–Ba–Cu–O [(RE)BCO] high-temperature superconductors (HTS). Recent attempts to add Ag2O to superconducting Y-123/Y2Ba4CuNbO12 composites, however, have produced a highly anisotropic morphology of Ag particles in samples grown by top-seeded melt growth (TSMG). This morphology has been attributed to strong particle pushing effects due to the presence of Y-24Nb1 nanoparticles in the composite microstructure. An investigation of the formation of anisotropic Ag particles in the YBCO bulk microstructure indicates that these pushing effects generate different morphological microstructural zones in the composite. These include a zone free of inclusions other than acicular Ag particles, a zone of segregated additives (i.e., Y-24Nb1, Y-211, and Ag), and a zone containing fine Ag and other particles distributed uniformly throughout the local microstructure. The particle pushing/trapping theory has been used to explain these extraordinary features of the distribution of Ag inclusions. The superconducting and mechanical properties of samples containing very fine silver inclusions are also discussed briefly.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献