Icosahedral Boron-Rich Solids as Refractory Semiconductors

Author:

Emin David

Abstract

ABSTRACTIcosahedral boron-rich solids are refractory materials composed of twelve-atom boron-rich icosahedral units with strong intericosahedral linkages. These distinctive structures admit unusual electronic and thermal transport properties. Here the distinctive (three-center) bonding which underlies these materials is first described. Then it is shown how insulators, semiconductors and highly degenerate (metal-like) materials emerge from the same basic structure with appropriate substitutions.The electronic transport of the boron carbides is then addressed. The boron carbides are degenerate p-type semiconductors in which the charge carriers are diamagnetically aligned pairs of electrons which hop between icosahedra. Uniquely, this thermally activated hopping conductivity increases with increasing hydrostatic pressure. However, the Seebeck coefficient (thermoelectric power) is uncharacteristic of a degenerate semiconductor. Namely, the Seebeck coefficient is typically both large and an increasing function of temperature. In addition, despite the hardness and refractory character of these materials, their thermal conductivities can be surprisingly low with a glass-like temperature dependence. These features are manifestations of the distinctive structure and bonding of these solids. In fact, this novel mix of properties makes the boron carbides exceptionally good very-high-temperature p-type thermoelectric materials.Icosahedral boron-rich solids have additional potential as high temperature semiconductors. In particular, the wide-gap icosahedral boronrich pnictides, B12P2 and B12As2, may be doped to form wide-gap refractory semiconductors. For example, replacement of the group V element with either a group VI or a group IV element is expected to yield n-type and ptype material, respectively.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference41 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Possible boron-rich amorphous silicon borides from ab initio simulations;Journal of Molecular Modeling;2023-03-10

2. Ab initio study of boron‐rich amorphous boron carbides;Journal of the American Ceramic Society;2023-01-10

3. Spectral analysis of the electronic structure of γ-B28;Journal of Superhard Materials;2011-12

4. Chemical interaction in the B–BN system at high pressures and temperatures.;Journal of Solid State Chemistry;2009-06

5. Heteroepitaxial B12As2 on silicon substrates;Journal of Crystal Growth;2006-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3