Affiliation:
1. Materials Science and Mechanical Engineering Program and Department of Nanotechnology Engineering Abdullah Gül University Kayseri Turkey
Abstract
AbstractAmorphous boron carbide compositions having high B contents (BxC1−x, 0.50 ≤ x ≤ 0.95) are systematically created by way of ab initio molecular dynamics calculations, and their structural, electrical, and mechanical characteristics are inclusively investigated. The coordination number of both B and C atoms increases progressively with increasing B/C ratio and more close‐packed materials having pentagonal pyramid motifs form. An amorphous diamond‐like local arrangement is found to be dominant up to 65% B content, and beyond this content, a mixed state of amorphous diamond– and B‐like structures is perceived in the models because sp3hybridization around C atoms is still leading one for all compositions. The pentagonal pyramid motifs around C atoms are anticipated to appear beyond 65% content. The intericosahedral linear C–B–C chains do not form in any model. All amorphous boron carbides are semiconducting materials. The mechanical properties gradually increase with increasing B concentration, and some amorphous compositions are proposed to be hard materials on the basis of their Vickers hardness estimation.
Funder
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
Subject
Materials Chemistry,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献