Combined Thermal and UV Growth of Thin Dielectrics on Silicon in an NO Environment

Author:

Jamet Philippe,Tanner Philip,Harrison H. Barry,Dimitrijev Sima

Abstract

ABSTRACTThe necessity to decrease silicon wafer-processing temperatures substantially has stimulated research into new and innovative techniques for the formation of thin dielectric films. A photo-decomposition technique using Nitric Oxide (NO) is one such promising method. Thermally NO-grown and NO-annealed dielectric films have already shown very encouraging physical and electrical results. This study compares thermally NO-grown oxides with thermally NO grown and assisted by ultraviolet (UV) irradiation. Methods using UV and vacuum UV light generated from low-pressure mercury or deuterium lamps to stimulate the growth of ultrathin dielectric films are described. The oxynitridation of silicon is carried out by irradiating an ultraviolet beam on the heated silicon substrate covered by a thin layer of nitric oxide gas. Typical resultant film thickness were in the range 10 –40 A after oxynitridation for various times at 500°C. MIS devices were fabricated using these films as gate insulators and were electrically characterized. Electrical characterization revealed good film qualities, rendering this new UV-NO oxynitridation technique promising for low temperature (<600°C) semiconductor processing. Films grown in NO ambient under deuterium lamp irradiation followed by NO annealing were also investigated. These results will also be presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3