Sub-Nanometric Resolution Depth Profiling of Ultrathin Ono Structures

Author:

Radtke C.,Salgado T.D.M.,Krug C.,Andrade J. de,Baumvol I.J.R.

Abstract

ABSTRACTUltrathin silicon oxide/nitride/oxide films on silicon prepared by the usual route -thermal growth of an oxide followed by deposition of a nitride layer by chemical vapor deposition, and finally a reoxidation step - were characterized using isotopic substitution of N and O and depth profiling with sub-nanometric resolution. The redistribution of N and O during the oxide/nitride/oxide film processing was investigated by: i) 15N and 18O depth profiling by means of narrow nuclear resonance, and ii) 16O profiling using step-by-step chemical dissolution associated with areal densities determinations by nuclear reaction analysis. It was observed that the reoxidation step, here performed varying temperature and time, induces atomic transport of O and N thus resulting in oxide/nitride/oxide structures which are not stacked layered ones, but rather silicon oxynitride ultrathin films, in which the N concentration presents a maximum in the bulk and is moderate in the near-surface and near-interface regions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3