Selective Modification of the Tribological Properties of Aluminum Through Temperature and Dose Control in Oxygen Plasma Source Ion Implantation

Author:

Bolduc M.,Terreault B.,Reguer A.,Shaffer E.,St-Jacques R.G.

Abstract

Improvements in the tribological properties of pure aluminum and “aeronautical” alloy AA7075-T651 were obtained by oxygen-ion implantation [(0.7 to 5) × 1017 O/cm2, 30 keV] using our pulsed electron cyclotron resonance plasma source. This oxygen plasma source ion implantation process produced oxide nanoprecipitates that enhanced the hardness up to three times in the surface layer and caused reductions in the scratch depths and the friction coefficients by similar factors. A spectrum of tribological properties was obtained depending on temperature and ion dose. Temperature measurement and control were obtained through an integrated thermocouple and by changing the duty-cycle of the microwave source. The oxygen content and the depth-resolved chemical composition were measured and optimized using x-ray photoelectron spectroscopy (XPS) combined with Ar-ion etching. The tribological properties were investigated by (i) depth-sensing nanoindentation for hardness and Young's modulus, (ii) scratching and scratch-depth measurement via atomic force microscopy (AFM), and (iii) friction force measurements using AFM. Low-temperature (≤160°C) implantations with optimal O-ion doses produced, in both pure and alloyed Al, an approximately 50-nm-thick, smooth, and extremely fine-grained metal–alumina nanocomposite. The resulting surface was hard and stiff but nonbrittle and displayed high scratch resistance and low friction. High-temperature (~430°C) implantation had different effects on pure Al and AA7075. On pure Al, it produced a very hard but brittle Al2O3 layer for which yield points (displacement excursions) were observed at critical load values in the nanoindentation force–displacement curves. On AA7075, XPS chemical profiling revealed an effect of extreme Mg surface segregation and complete Al surface depletion; MgO crystallites formed a rather rough but surprisingly thick layer (>100 nm). The resulting AA7075 surface showed a hardness increase that was substantial but slightly smaller than that obtained at low temperature.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3