Abstract
AbstractMagnetic field induced prolonged changes (MFIPC) of electric parameters of semiconductor systems is the phenomenon that has been recently established experimentally. In this work it is investigated for the first time the influence of electric field and temperature on duration of MFIPC of carrier generation lifetime in Si subsurface region and the influence of temperature on MFIPC of the MOS structure leakage voltage. The value of determined mobility of generated defects corresponds to the diffusion coefficient of vacancy -impurity complexes. These investigations of MFIPC of microstructure confirm that non-equilibrium defects reactions are limited by diffusion (in the absence of external electric field). It is shown that the corresponding diffusion coefficient is about 10−13 cm2s−1 and the magnitude of diffusion activation energy determined from these investigations is in the range 0.45–0.5 eV. This value is nearly the same as the diffusion coefficient of vacancy-impurity complex.
Publisher
Springer Science and Business Media LLC