Selectivity Studies On Tantalum Barrier Layer In Copper CMP

Author:

Vijayakumar Arun,Du Tianbao,Sundaram Kalpathy B.,Desai Vimal

Abstract

AbstractCopper metallization in sub-0.18 μm semiconductor devices is achieved by combining the dual damascence techniques followed by chemical mechanical planarization (CMP). Tantalum and its nitride have been identified as the diffusion barrier layer for copper metallization. However, the wide differences in properties between copper and tantalum layers result in selectivity problems during CMP process. The aim of this work is to obtain a better understanding on the slurry selectivity for copper and tantalum and to develop slurries with best selectivity performance. In this work, the effect of several chemical parameters (abrasive type, oxidizer type, concentration, pH etc.) was studied through static and dynamic tests using advanced electrochemical techniques and surface analysis techniques. The surface layers of the statically etched copper and tantalum discs were investigated using X-ray photoelectron spectroscopy (XPS) and surface planarity was studied using atomic force microscopy (AFM). Polishing rates results show that alumina-based slurry polished copper very well whereas tantalum removal rate was low. However, for the silica-based slurry the tantalum shows much higher removal rate than copper and better surface planarity was obtained.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference6 articles.

1. Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures

2. 5. Du T. , Luo Y. and Desai V. , submitted to Thin Solid Films, 2003.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3