Ultra-Shallow Junction Formation Technology from the 130 to the 45 nm node

Author:

Jain Amitabh

Abstract

ABSTRACTOne of the main materials challenges of the 130 nm silicon technology node was the need to find a processing solution to the anomalous diffusion behavior of ion-implanted dopants known from three decades of research. Reduction of implantation energy no longer proved sufficient when trying to reduce source/drain extension junction depth, increase abruptness, and limit sheet resistance. Spike-annealing, a new process in which ion implanted silicon could be heated rapidly to temperatures required for dopant activation and then cooled down without dwelling at temperature, adequately addressed the scaling requirements of this node. The resulting junctions achieved high dopant concentration values very close to the surface while limiting junction depth. However, this increased the propensity for dopant migration to overlying layers associated with the source/drain spacer. Loss of device performance due to this and other phenomena became a strong motivating factor for further materials research in order to sustain progress through the 130 nm and 90 nm nodes. Complex interactions between various layers have been understood and the resulting developments in spacer materials have enabled high performance devices. The requirements of the 65 and 45 nm nodes stretch spike-annealing to its limit and newer Ultra-High Temperature anneals must be considered.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference27 articles.

1. 27. Thirupapuliyur S. , Al-Bayati A. , Mayur A. and Jain Amitabh , to be presented at the 205th Meeting of The Electrochemical Society, Advanced Short-Time Thermal Processing for Si- Based CMOS Devices II (2004).

2. Implantation damage and the anomalous transient diffusion of ion‐implanted boron

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid Thermal Processing;Handbook of Semiconductor Manufacturing Technology, Second Edition;2007-07-09

2. The Behavior of Ion Implanted Silicon During Ultra-High Temperature Annealing;MRS Proceedings;2006

3. Defect Evolution During Laser Annealing;MRS Proceedings;2006

4. Millisecond Annealing: Past, Present and Future;MRS Proceedings;2006

5. The effect of excimer laser pretreatment on diffusion and activation of boron implanted in silicon;Applied Physics Letters;2005-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3