Author:
Nijhawan Sumit,Jankovsky Susan M.,Sheldon Brian W.,Walden Barbara L.
Abstract
Intrinsic stresses which arise during the chemical vapor deposition (CVD) of diamond were controlled by multistep processing. Film stresses (thermal and intrinsic) were measured with the bending plate method. The thermal stresses are compressive and arise due to the mismatch in thermal expansion coefficient between the film and substrate. The dominant intrinsic stresses are tensile and evolve during the deposition process. These stresses increase with deposition time. An intermediate step consisting of annealing the film when the diamond crystallites are only partially coalesced reduces the intrinsic stress by more than 50%. Annealing at longer growth times (i.e., after complete coalescence) does not produce large reductions in intrinsic stress. Our results are consistent with stress generation due to the formation of nonequilibrium grain boundary structures. The intermediate annealing step does not produce a large, direct stress reduction; instead, it alters the film microstructure in some subtle way which reduces stress generation during subsequent growth.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献