Author:
Tsui T. Y.,Vlassak Joost,Nix William D.
Abstract
The plastic deformation behavior of Knoop indentations made in a soft, porous titanium/aluminum multilayered thin film on a hard silicon substrate is studied through use of the focused-ion-beam milling and imaging technique. Pileup is observed for indentations with depths larger than 30% of the total film thickness. Analysis of the indentation cross sections shows that plastic deformation around the indentation is partly accommodated by the closing of the pores within the multilayers. This densification process reduces the amount of pileup formed below that predicted by finite element simulations. Experimental results show that the pileup is formed by an increase of the titanium layer thickness near the edges of the indentation. The thickness increase is largest near the film/substrate interface and decreases toward the surface of the multilayered film. The amount of normal compression near the center of the indenter is characterized, and it is demonstrated that the deformation becomes more nonuniform with increasing indentation depth.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
147 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献