Measuring the interface stress: Silver/nickel interfaces

Author:

Josell D.,Bonevich J. E.,Shao I.,Cammarata R. C.

Abstract

Interface stress is a surface thermodynamics quantity associated with the reversible work of elastically straining an internal solid interface. In a multilayered thin film, the combined effect of the interface stress of each interface results in an in-plane biaxial volume stress acting within the layers of the film that is inversely proportional to the bilayer thickness. We calculated the interface stress of an interface between {111} textured Ag and Ni on the basis of direct measurements of the dependence of the in-plane elastic strains on the bilayer thickness. The strains were obtained using transmission x-ray diffraction. Unlike previous studies of this type, we used freestanding films so that there was no need to correct for intrinsic stresses resulting from forces applied by the substrate that can lead to large uncertainties of the calculated interface stress value. Based on the lattice parameters of the bulk, pure elements, an interface stress of −2.02 ± 0.26 N/m was calculated using the x-ray diffraction results from films with bilayer thicknesses greater than 5 nm. This value is somewhat smaller than previous measurements obtained from as-deposited films supported by substrates. For smaller bilayer thicknesses the apparent interface stress becomes smaller in magnitude, possibly due to a loss of layering in the specimens.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference20 articles.

1. 19. Smithells Metals Reference Book, edited by E.A. Brandes (Butterworths, London, 1983), p. 14–1.

2. 17. Card Nos. 04–0850 (Ni) and 64–0783 (Ag), JCPDS-International Center for Diffraction Data V. 1.30 (1997).

3. Elastic strains and coherency stresses in Mo/Ni multilayers

4. Relationship between Interfacial Strain and the Elastic Response of Multilayer Metal Films

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3