Circular inclusion with a refined linearized version of Steigmann–Ogden model

Author:

Huang Cheng1,Dai Ming2ORCID

Affiliation:

1. School of Aerospace and Mechanical Engineering, Changzhou Institute of Technology, Changzhou, China

2. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

The plane deformation of an infinite elastic matrix enclosing a single circular inclusion incorporating stretching and bending resistance for the inclusion–matrix interface is revisited using a refined linearized version of the Steigmann–Ogden model. This refined version of the Steigmann–Ogden model differs from other linearized counterparts in the literature mainly in that the tangential force of the interface defined in this version depends not only on the stretch of the interface but also on the bending moment and initial curvature of the interface (the corresponding bending moment relies on the change in the real curvature of the interface during deformation). Closed-form results are derived for the full elastic field in inclusion–matrix structure induced by an arbitrary uniform in-plane far-field loading. It is identified that with this refined version of the Steigmann–Ogden model a uniform stress distribution could be achieved inside the inclusion for any non-hydrostatic far-field loading when [Formula: see text] (where R is the radius of the inclusion, while [Formula: see text] and [Formula: see text] are the stretching and bending stiffness of the interface). Explicit expressions are also obtained for the effective transverse properties of composite materials containing a large number of unidirectional circular cylindrical inclusions using, respectively, the dilute and Mori–Tanaka homogenization methods. Numerical examples are presented to illustrate the differences between the refined version and two typical counterparts of the Steigmann–Ogden model in evaluating the stress field around a circular nanosized inclusion and the effective properties of the corresponding homogenized composites.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3