Fabrication and characterization of ferroelectric Pb(ZrxTi1–x)O3 thin films by metalorganic chemical vapor deposition

Author:

Song Han Sang,Kim Tae Song,Kim Chang Eun,Jung Hyung Jin

Abstract

Ferroelectric Pb(Zr, Ti)O3 (PZT) thin films were grown on Pt/Ti/SiO2/Si, RuO2/Pt/Ti/SiO2/Si, and Pt/MgO substrates at the substrate temperature of 600 °C by the metalorganic chemical vapor deposition (MOCVD) method. Pb(C11H19O2)2(Pb(DPM)2), Ti(OiC3H7)4, and Zr(OtC4H9)4 as source material and Ar and O2 as a carrier gas and oxidizing agent were selected, respectively. In order to investigate the effect of Zr and Ti component changes on the growth aspect of PZT thin films, Zr and Ti source materials were varied by controlling Zr and Ti flow rate. From the Rutherford backscattering spectroscopy (RBS) measurement, it was confirmed that the composition of the films, particularly Pb content, changed with the increasing Zr flow rate. In addition, the x-ray diffraction (XRD) spectra analysis showed the existence of a Pb-deficient pyrochlore phase as well as ZrO2 as a secondary phase. From these results, it is believed that the higher Zr partial pressure in the gas phase reduces the sticking of the Pb precursor to the substrate. The film with Pb:Zr:Ti = 1:0.42:0.58 showed a dielectric constant of 816 at 1 MHz. The spontaneous polarization, remanent polarization, and coercive field measured from the RT66A by applying 3.5 V were 44.1 μC/cm2, 24.4 μC/cm2, and 59.6 kV/cm, respectively. The fatigue analysis of PZT thin films with Pb:Zr:Ti = 1:0.42:0.58 at an applied voltage of Vp-p = 5.4 V showed 40% degradation on the basis of initial polarization value after 109 cycles.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3