Light Generating Carrier Recombination and Impurities in Wurtzite GaN/Al2O3Grown by MOCVD

Author:

Kaufmann U.,Kunzer M.,Merz C.,Akasaki I.,Amano H.

Abstract

ABSTRACTWe have studied by photoluminescence (PL) and optically detected magnetic resonance (ODMR) un-doped, n-doped and p-doped thin wurtzite GaN layers grown by metal-organic chemical vapor deposition on sapphire substrates. From the PL data for free excitons an accurate value of the free A-type exciton binding energy and a more accurate estimate for the hole effective mass is deduced. The localization energies of the Mg and the Zn neutral acceptor bound excitons are found to be in good agreement with Haynes’ rule. A sharp emission line, assigned to free electron recombination at a 116 meV shallow acceptor, together with three additional weak zero-phonon-lines (ZPLs), assigned to distant donor-acceptor (DA) pairs, are reported for the first time. The chemical nature of this acceptor and that of three residual donors, inferred from the DA pair ZPLs, is discussed. The effects of strain in thin GaN layers on a dissimilar substrate like sapphire are emphasized with respect to the energetic position of narrow PL lines. The ODMR data obtained for undoped, Mg-doped and Zn-doped GaN layers provide insight into the recombination mechanisms responsible for the broad yellow (2.25 eV), the violet (3.15 eV) and the blue (2.8 eV) PL bands, respectively. The ODMR results for Mg and Zn also show that these acceptors donotbehave effective mass like and indicate that the acceptor hole is mainly localized in the nearest neighbor shell surrounding the acceptor core.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of Defects in GaN: Optical and Magnetic Resonance Techniques;Crystals;2022-09-14

2. Carbon complexes in highly C-doped GaN;Physical Review B;2021-08-05

3. Group III Nitrides;Springer Handbook of Electronic and Photonic Materials;2006

4. Electronic structure and impurity states in GaN quantum dots;Solid State Communications;2005-08

5. Mg in GaN: the structure of the acceptor and the electrical activity;physica status solidi (c);2003-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3