Morphology of TiSi2 and ZrSi2 on Si(100) and (111) surfaces

Author:

Sukow C.A.,Nemanich R.J.

Abstract

The morphologies of ZrSi2 on Si(111) and TiSi2 on Si(111) and (100) have been investigated, and the results compared and contrasted. Films were prepared by UHV deposition of Ti or Zr onto clean, reconstructed Si(100) or (111) substrates, and reacted by in situ annealing. The sheet resistivity of the ZrSi2 was measured and found to be 33-42 μΩ-cm. The morphologies were examined by transmission and scanning electron microscopy. In particular, the islanding properties were studied; both the temperature of the onset of islanding and the island characteristics were measured. The surface and interface energies have been determined from the contact angles of the silicide islands, according to a solid-state capillarity model. The system of ZrSi2 on Si(111) was found to have surface and interface energies lower than those of the system of TiSi2 on Si(100), but higher than those of the system TiSi2 on Si(111). ZrSi2 on Si(111) was found to island at a higher temperature than TiSi2 on either substrate, a result attributed to kinetic effects. Areal coverage of the islands was measured, and the results were consistent with the solid-state capillarity model. For both TiSi2 and ZrSi2, increasing faceted structure was observed with increasing anneal temperature. Preferred faceting planes were found to be of Si(111) and (100) type for TiSi2 islands and of Si(111) type for ZrSi2. Faceted islands were apparently epitaxial. As the solid-state capillarity model does not directly apply to islands with a faceted structure, an observation of the percentage of faceted islands produced by different annealing temperatures was used to suggest the processing conditions in which the model is applicable.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3