Electroless copper films deposited onto laser-activated aluminum nitride and alumina

Author:

DeSilva M. J.,Pedraza A. J.,Lowndes D.H.

Abstract

Metallization of ceramic substrates by laser activation and subsequent electroless deposition has been demonstrated recently in aluminum nitride and alumina. However, the bond strength between the electroless copper and the ceiamic substrate is weak (less than 14 MPa). Low temperature annealing of electroless copper films deposited on substrates activated at low laser energies strongly increases the adhesion strength. The effectiveness of the annealing for improving the metal-ceramic bonding is dependent upon the laser treatment performed on the substrate prior to deposition. Faster deposition kinetics are obtained for both substrates by increasing the laser energy density. On the other hand, an increase in the laser energy density leads to poor adhesion strengths. The dislocation microstructure produced during laser irradiation in aluminum nitride is analyzed as a possible cause of laser activation. Free aluminum produced by laser irradiation of aluminum nitride and of alumina is discussed as another factor of laser activation. The chemical and microstructural changes taking place in the near-surface region as a consequence of laser-induced processes are correlated with adhesion enhancement promoted by the annealing treatment.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference18 articles.

1. THE OXYGEN ACTIVITY DEPENDENCE OF SPINEL INTERPHASE FORMATION DURING Ni/Al2O3 DIFFUSION BONDING

2. 11 Cao S. , Pedraza A. J. , and Allard L. F. , private communication.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3