Solid-state reaction of Pt thin film with single-crystal (001) β–SiC

Author:

Chen J.S.,Kolawa E.,Nicolet M-A.,Ruiz R.P.,Baud L.,Jaussaud C.,Madar R.

Abstract

Thermally induced solid-state reactions between a 70 nm Pt film and a single-crystal (001) β-SiC substrate at temperatures from 300 °C to 1000 °C for various time durations are investigated by 2 MeV He backscattering spectrometry, x-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and cross-sectional transmission electron microscopy. Backscattering spectrometry shows that Pt reacts with SiC at 500 °C. The product phase identified by x-ray diffraction is Pt3Si. At 600–900 °C, the main reaction product is Pt2Si, but the depth distribution of the Pt atoms changes with annealing temperature. When the sample is annealed at 1000 °C, the surface morphology deteriorates with the formation of some dendrite-like hillocks; both Pt2Si and PtSi are detected by x-ray diffraction. Samples annealed at 500–900 °C have a double-layer structure with a silicide surface layer and a carbon-silicide mixed layer below in contact with the substrate. The SiC—Pt interaction is resolved at an atomic scale with high-resolution electron microscopy. It is found that the grains of the sputtered Pt film first align themselves preferentially along an orientation of {111}Pt//{001}SiC without reaction between Pt and SiC. A thin amorphous interlayer then forms at 400 °C. At 450 °C, a new crystalline phase nucleates discretely at the Pt-interlayer interface and projects into or across the amorphous interlayer toward the SiC, while the undisturbed amorphous interlayer between the newly formed crystallites maintains its thickness. These nuclei grow extensively down into the substrate region at 500 °C, and the rest of the Pt film is converted to Pt3Si. Comparison between the thermal reaction of SiC-Pt and that of Si–Pt is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3