On the microstructure and thermal stability of rapidly quenched Fe–B alloys in the intermediate composition range between the crystalline and amorphous states

Author:

Fernández van Raap M.B.,Sánchez F.H.,Zhang Y.D.

Abstract

The structure and the thermal stability of the Fe0.89B0.11 rapidly quenched alloy have been investigated. Transmission Mössbauer measurements were carried out as a function of temperature in the range from 148 K to 513 K. Room temperature x-ray diffraction and transmission and conversion-electron Mössbauer experiments, as well as 4.2 K spin-echo nuclear magnetic resonance measurements, were also performed after some selected thermal treatments for one hour between 523 K and 1273 K. Based on these experiments it is suggested that the alloy is inhomogeneous at nanoscopic scale and consists of a fine dispersion of a defective boride phase with an o-Fe3B-like short-range order, embedded in an α-Fe matrix. This result gives support to the models which indicate phase separation in the amorphous phase with o-Fe3B short-range order prevailing in the hypereutectic iron concentration range. This phase was found to be less stable than the undefective one present in the less boron concentrated alloys. The transformation into the equilibrium phases, analyzed with an Arrhenius-type temperature dependence for the increase of the relative fraction of Fe2B, led to an activation energy Ea = 1.38 ± 0.68 eV/atom.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3