Abstract
The surface of commercial pitch and PAN-based carbon fibers has been modified by coating the structures with catalytically formed carbon nanofibers. Reaction conditions have been established that enable one to achieve optimum coverage by the secondary nanostructures without inducing any degradation in the mechanical properties of the parent fibers. Using this approach it is possible to produce a dramatic increase in the surface area of the fibrous structure from a nominal value of about 1.0 m2/g (untreated condition) up to between 250 and 300 m2/g (complete nanofiber coverage). This process results in a significant enhancement in the adhesion properties at the interface between the fiber and matrix components in a composite material. Mechanical tests performed on single uncoated and coated T300 carbon fibers demonstrated that it was possible to obtain an improvement of over 4.75 times in the interfacial shear strength of the fibers following deposition of a critical amount of nanofibers.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献