Interface engineering of carbon fiber composites using CNT: A review

Author:

Sahu Renuka1ORCID,Ponnusami Sathiskumar A.2ORCID,Weimer Christian3ORCID,Harursampath Dineshkumar1ORCID

Affiliation:

1. Department of Aerospace Engineering Indian Institute of Science Bangalore India

2. Department of Mechanical Engineering and Aeronautics University of London London UK

3. Central Research and Technology (CRT) Airbus Defence and Space Gmbh Taufkirchen Germany

Abstract

AbstractThis paper aims to explore the potential of carbon nanotubes (CNTs) in enhancing the structural capability and multifunctionality of carbon fiber composites in aerospace applications, primarily by focusing on interfacial applications. The conventional method of dispersing CNTs in a matrix is not fully efficient in exploiting the mechanical and multifunctional performance of CNTs. Hence, the use of CNTs at the interface or as a coating on the surface of carbon fibers has been suggested as a means of achieving multifunctionality, in addition to enhanced mechanical performance. The paper presents an overview of the various processes for growing CNTs on carbon fiber surfaces and examines the effects of CNT geometry and growth parameters on the properties of grafted fibers and their composites. Furthermore, it discusses the potential improvements in thermal and electrical conductivity achievable by incorporating CNTs at the interface, as well as the benefits of using CNTs as a sizing layer for carbon fibers, including enhanced fracture toughness and resistance to delamination.Highlights Comprehensive study of interface engineering in carbon fibers and Carbon Fibre Reinforced Plastic (CFRPs) using carbon nanotubes (CNTs). Improved transverse mechanical properties and overall thermal and electrical properties. Multifunctional applications possible with the use of CNT. Both experimental and numerical studies reviewed.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3