Effect of composition on phase formation and morphology in Ti–Si1−xGex solid phase reactions

Author:

Aldrich D.B.,Chen Y.L.,Sayers D.E.,Nemanich R.J.,Ashburn S.P.,Öztürk M.C.

Abstract

The effects of Si1−xGex alloy composition on the Ti-Si1−xGex solid phase reaction have been examined. Specifically, effects on the titanium gcrmanosilicide phase formation sequence. C54 Ti(Si1−yGey)2 nucleation temperature, and C54 Ti(Si1−yGey)2 morphology were examined. It was determined that the Ti-Si1−xGex reaction follows a “Ti-Si-like” reaction path for Si-rich Si1−xGex alloys and follows a “Ti-Ge-like” reaction path for Ge-rich Si1−xGex alloys. The coexistence of multiple titanium germanosilicide phases was observed during Ti-Si1−xGex reactions for Si1−xGex alloys in an intermediate composition range. The morphology and stability of the resulting C54 germanosilicides were directly correlated to the Ti-Si1−xGex reaction path. Smooth continuous C54 titanium germanosilicide was formed for samples with Si1−xGex compositions in the “Ti-Si-like” regime. Discontinuous islanded C54 germanosilicides were formed for samples with Si1−xGex compositions in the mixed phase and “Ti-Ge-like” regimes. Using rapid thermal annealing techniques, it was found that the C54 titanium germanosilicides were stable to higher temperatures. This indicated that the morphological degradation occurs after C54 phase formation. The C54 Ti(Si1−xGex)2 formation temperature was examined as a function of alloy composition and was found to decrease by ≍ 70 °C as the composition approached x ≍ 0.5. An optimum Si1−xGex alloy composition range of 0 ⋚ x ⋚ 0.36 was determined for the formation of stable-continuous-low-resistivity-C54 titanium germanosilicide films from the solid phase reaction of Ti and Si1−xGex alloy. The results were described in terms of the relevant nucleation processes.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference44 articles.

1. Morphology of TiSi2 and ZrSi2 on Si(100) and (111) surfaces

2. 25 Ashburn S.P. , Öztürk M.C. , Harris G. , Maher D.M. , Aldrich D.B. , and Nemanich R.J. , private communication.

3. The influence of germanium substitution on the phase stability of 3d transition metal disilicides

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal Stability and Sn Segregation of Low-Resistance Ti/p+-Ge0.95Sn0.05 Contact;IEEE Electron Device Letters;2019-10

2. Contact Metallization on Silicon–Ger manium;SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices;2007-12-13

3. Silicides;Handbook of Semiconductor Manufacturing Technology, Second Edition;2007-07-09

4. Overview;Silicon Heterostructure Handbook;2005-11

5. Contact Metallization on Silicon–Germanium;Silicon Heterostructure Handbook;2005-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3