Void nucleation in metal interconnects: Combined effects of interface flaws and crystallographic slip

Author:

Shen Y-L.

Abstract

A micromechanical model of void nucleation in passivated metal interconnection lines is proposed. The model is based on the evolution of stress and strain fields in a two-dimensional model system, obtained from numerical modeling. Interface flaws in the form of debond between the metal and the surrounding dielectric are assumed to exist. A unique pattern of shear stress resolved on the slip systems in the metal line, due to the presence of pre-existing debond, is found. A dislocation slip model is constructed in accordance with the shear mode. The mechanism of crystallographic slip is such that lateral thinning of the metal line at the debond region together with the slip step produced at the edges of debond lead to a net transport of atoms away from the debond area, and a physical void is thus formed. The significance and implications of this proposed micromechanism are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3