Author:
Kim Seung-Hyun,Hong J. G.,Streiffer S. K.,Kingon Angus I.
Abstract
We have investigated the effect of RuO2 (10, 30, 50 nm)/Pt layered hybrid bottom electrode structure and film composition on the leakage and fatigue properties of chemical solution derived Pb(ZrxTi1−x)O3 (PZT) thin films. It was observed that the use of high Ti content (Zr: Ti = 30: 70) films with control of excess PbO at the thin RuO2 (10 nm)/Pt bottom electrode surface reduced leakage current and showed good fatigue properties with high remanent polarization compared to the use of high Zr films (Zr: Ti = 50: 50) or thicker RuO2 (30, 50 nm)/Pt bottom electrodes. Typical P-E hysteresis behavior of PZT films was observed even at an applied voltage of 3 V, demonstrating greatly improved remanence and coercivity. Fatigue and breakdown characteristics of these modified PZT thin films (Zr: Ti = 30: 70) on RuO2 (10 nm)/Pt, measured at 5 V, showed stable behavior, and less than 15% fatigue degradation was observed up to 1010 cycles.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献