Effect of Gravity on Titanium Carbide Foams by Self-propagation High-temperature Synthesis

Author:

Tanabe Yasuhiro,Sakamoto Takashi,Okada Nobuko,Akatsu Takashi,Yasuda Eiichi,Takasu Seiichi,Sabato Takayuki

Abstract

Titanium carbide foams are synthesized by a self-propagation high-temperature synthesis technique using carbon black, which generates gases during the synthesis. The synthesis is performed under terrestrial and microgravity conditions. The effects of gravity on the synthesis are evaluated in this study. The foaming is mainly caused by H2O and CO gases from the carbon black. The elongation of the products increases with decreasing environmental pressure and increasing amount of generated gases. Since the gas flows out along the direction of the combustion wave propagation, the products expand only along this direction. The propagation velocity of the combustion wave increases with increasing amount of generated gases and environmental pressure, which is due to the amount of molten Ti transporting into the reaction/preheat zone. Under higher environmental pressures, thermal convection of the environmental gases mainly affects the propagation velocity. However, at lower pressures, the behavior of the molten Ti has a great effect compared with the gases surrounding the specimens.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference13 articles.

1. 8. Shteinberg A.S. and Scherbakov V.A. , NASA.SP., N96–155783 (1995).

2. Structure of the combustion wave in the combustion synthesis of titanium carbides

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3