Recent advances on ISRU technologies and study of microgravity impact on blood cells for deep space exploration

Author:

Cao Giacomo,Concas Alessandro,Orrù Roberto,Licheri Roberta,Sani Elisa,Dell’Oro Aldo,Fais Giacomo,Manis Cristina,Manca Alessia,Uras Giuseppe,Caboni Pierluigi,Locci Antonio Mario,Cincotti Alberto,Lai Nicola,Congiu Terenzio,Faa Gavino,Pisu Massimo,Brelstaff Gavin,Pantaleo Antonella

Abstract

The long-term solution to problems like overcrowding, fossil fuel depletion, climate change, and decreasing natural resource availability could be overcome through space colonization and human presence in space, as well as the exploitation of extraterrestrial natural resources. In keeping with this, the objective of this work is to analyze current advancements in technology development for deep space exploration and colonization made by our research team as well as by other organizations with which we are collaborating. First, a method for producing tangible goods suited for industrial or civil installations on the Moon, Mars, or asteroids, using in situ available regolith as the main resource, is discussed. In this regard, a new process based on the occurrence of self-propagating high-temperature synthesis (SHS) reactions was developed for the fabrication of composite ceramics to be used as construction materials. A theoretical analysis of the process using proper dimensionless numbers is also described to offer potential explanations of the key experimental evidences presented in the relevant literature. For instance, it is found that free convection likely plays a crucial role to make SHS front velocity higher under terrestrial conditions when the reaction ignition is carried out from the bottom side, instead of the top side, of reacting mixture. Next, a method that uses the atmosphere and regolith of Mars as raw feedstock to produce in situ useful material such as oxygen, water, food, fuels and fertilizers, is considered. In the next section, the potential for cultivating Spirulina platensis to provide nourishment for the Martian crew is examined. The possible use of sintered lunar regolith simulants such as JSC-1A is also considered for potential thermal energy storage and solar energy harvesting applications, within the context of resource exploitation. Sintered regolith simulant exhibited, compared to the native material in powder form, superior solar absorptance, which makes it suitable for sunlight absorbers in architectures with a cavity-like solar receiver. Finally, a new study is reported which combines biochemical and biophysical approaches in order to compare, under simulated microgravity and under terrestrial conditions, the functioning and structure of red blood cells, over various intervals of time.

Publisher

Frontiers Media SA

Subject

General Materials Science

Reference106 articles.

1. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration;Afshinnekoo;Cell.,2020

2. Control of red blood cell mass in spaceflight;Alfrey;J. Appl. Physiol.,1996

3. Sintering bricks on the moon;Allen,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3