Author:
Nishitani-Gamo Mikka,Sakaguchi Isao,Takami Tomohide,Suzuki Katsunori,Kusunoki Isao,Ando Toshihiro
Abstract
We investigated the growth of high-quality homoepitaxial diamond on the (111) face in a microwave-assisted plasma chemical-vapor-deposition system incorporating an individual substrate heating/cooling device. The grown diamond films were characterized by scanning electron microscopy, reflection high-energy electron diffraction, atomic force microscopy, confocal micro-Raman spectroscopy, and secondary ion mass spectrometry. The (111) diamond films show a tendency to incorporate a significant amount of hydrogen during chemical-vapor-deposition growth. Hydrogen incorporation degrades the crystal quality and surface smoothness. The amount of incorporated hydrogen decreases with the decrease in deposition temperature. We have shown that the crystal quality and surface smoothness of homoepitaxial diamond strongly depend on the substrate temperature. Independent control of the substrate temperature and incident microwave power is essential for high-quality diamond homoepitaxy.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献