Neural net formulations for organically modified, hydrophobic silica aerogel

Author:

Noever David,Sibille Laurent,Cronise Raymond,Baskaran Subbiah,Hunt Arlon

Abstract

Organic modification of aerogel chemical formulations is known to transfer desirable hydrophobicity to lightweight solids. However, the effects of chemical modification on other material constants such as elasticity, compliance, and sound dampening present a difficult optimization problem. Here a statistical treatment of a 9-variable optimization is accomplished with multiple regression and an artificial neural network (ANN). The ANN shows 95% prediction success for the entire data set of elasticity, compared to a multidimensional linear regression which shows a maximum correlation coefficient, R = 0.782. In this case, using the Number of Categories Criterion for the standard multiple regression, traditional statistical methods can distinguish fewer than 1.83 categories (high and low elasticity) and cannot group or cluster the data to give more refined partitions. A nonlinear surface requires at least three categories (high, low, and medium elasticities) to define its curvature. To predict best and worst gellation conditions, organic modification is most consistent with changed elasticity for sterically large groups and high hydroxyl concentrations per unit surface area. The isocontours for best silica and hydroxyl concentration have a complex saddle, the geometrical structure of which would elude a simple experimental design based on usual gradient descent methods for finding optimum.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3