Heteroepitaxial growth of lanthanum aluminate films derived from mixed metal nitrates

Author:

Ng Man Fai,Cima Michael J.

Abstract

Epitaxial lanthanum aluminate (LaAlO3) thin films were deposited on single-crystal substrates by pyrolysis of spin-on mixed nitrate precursors. The films are epitaxial without any second phase. TEM micrographs show that all of these films have pores with sizes ranging from 5 to 30 nm. Grain boundaries are not observed. Selected area diffraction shows that the films are single-crystal-like, despite the porosity. All the films are smooth and crack-free. The precursors first decompose into an amorphous mixture. Heterogeneous nucleation occurs on the lattice-matched, single-crystal substrate surface. The epitaxial films grow upward and consume the amorphous regions. The crystallization temperature of LaAlO3 is lower for thin films than for bulk samples due to nucleation on the substrate. The crystallization of LaAlO3 does not exhibit linear growth kinetics. The Johnson–Mehl–Avrami exponent of growth is between 1.4 and 1.5. This deviation from the linear growth model (n = 1) can be attributed to continuous nucleation on the substrate/film interface.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference40 articles.

1. 33. Cahn J. W. , Crystal Growth, Supplement to Phys. and Chem. Solids, 681 (1966).

2. The processes of formation and epitaxial alignment of SrTiO3thin films prepared by metallo‐organic decomposition

3. 30. Fay H. and Brandle C. D. , Crystal Growth, Supplement to Phys. and Chem. Solids, 51 (1966).

4. Kinetics of Phase Change. I General Theory

5. Theory of crystal growth and interface motion in crystalline materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3