Ion Tracks in Solids: From Science to Technology to Diverse Applications

Author:

Fleischer Robert L.

Abstract

Fast ions create linear trails of intense atomic disorder in many solids. The particle tracks are in themselves scientifically interesting because they consist of unique, localized radiation damage. They also are noteworthy for their diverse practical uses, which range from improved high field superconductors to mineral exploration and bird altimetry. The two areas—what tracks are and what they do practically—are the subjects of this introduction and the following three articles. Although the mechanism for producing tracks in insulators is semi-quantitatively well-established, there is a distinct mystery as to the formation mechanism in superconductors, inter-metallics, and metals. This mystery is the subject of the next two articles written by discoverers of tracks in these materials.We will not discuss in detail the multitude of scientific uses for these tracks as particle-track detectors. Uses range from nuclear, elementary-particle, and cosmic-ray physics to geochronology, geochemistry, and geophysics; chemistry; and radiobiology. The interested reader can learn more on the subject through a book, part of which surveys scientific applications of particle tracks in solids. The key to these uses—and most of the practical uses—is that, in materials where tracks can be observed, either directly or by a widely applicable trick to be described, each detector sample is a nuclear particle-track chamber—the solid-state equivalent of the well-known gaseous and liquid detectors (i.e., cloud chambers and bubble chambers). The major distinction is that tracks in solids are long-lasting rather than transient features.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3