Inlaid Copper Multilevel Interconnections Using Planarization by Chemical-Mechanical Polishing

Author:

Murarka S.P.,Steigerwald J.,Gutmann R.J.

Abstract

Continuing advances in the fields of very-large-scale integration (VLSI), ultralarge-scale integration (ULSI), and gigascale integration (GSI), leading to the continuing development of smaller and smaller devices, have continually challenged the fields of materials, processes, and circuit designs. The existing metallization schemes for ohmic contacts, gate metal, and interconnections are inadequate for the ULSI and GSI era. An added concern is the reliability of aluminum and its alloys as the current carrier. Also, the higher resistivity of Al and its use in two-dimensional networks have been considered inadequate, since they lead to unacceptably high values of the so-called interconnection delay or RC delay, especially in microprocessors and application-specific integrated circuits (ICs). Here, R refers to the resistance of the interconnection and C to the total capacitance associated with the interlayer dielectric. For the fastest devices currently available and faster ones of the future, the RC delay must be reduced to such a level that the contribution of RC to switching delays (access time) becomes a small fraction of the total, which is a sum of the inherent device delay associated with the semiconductor, the device geometry and type, and the RC delay.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of the addition of O2 on copper etching using high density plasma of acetylacetonate/Ar;Materials Science in Semiconductor Processing;2022-12

2. 30 years of electroless plating for semiconductor and polymer micro-systems;Microelectronic Engineering;2015-01

3. Chemical mechanical planarization of gold;Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films;2014-03

4. Photolithography;Materials Science and Technology;2013-02-15

5. Colloid aspects of chemical–mechanical planarization;Journal of Colloid and Interface Science;2008-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3