Nucleation, Growth, and Microstructure of Nanocrystalline Diamond Films

Author:

Gruen Dieter M.

Abstract

It has been generally believed that hydrogen plays a central role in the various processes that have been developed over the years for the chemical vapor deposition (CVD) of diamond films. In particular it has been thought that atomic hydrogen is an absolutely essential ingredient of the vapor from which the films are grown. Typically in diamond CVD, gas mixtures consisting of l-vol% CH3 in 99-vol% H2 have been used in which atomic hydrogen is generated either by thermal decomposition or by collisional processes in a plasma. With a hydrocarbon precursor such as CH3, gas-phase hydrogen-abstraction reactions lead to the generation of the methyl radical CH3, which adsorbs on a carbon radical site also created by hydrogen abstraction from the hydrogen-terminated growing diamond surface. Additional hydrogen-abstraction reactions allow the carbon in the adsorbed methyl radical to form carbon-carbon bonds and thus be incorporated into the diamond lattice. Because graphite is thermodynamically more stable than diamond, the growth of metastable diamond has been thought to require the presence of atomic hydrogen, which has been said to stabilize the diamond lattice and to remove graphitic nuclei when they do form because of the preferential etching or regasification of graphite over diamond. This description of diamond-film growth from hydrocarbon–hydrogen mixtures is of course a very highly condensed version of the detailed experimental and theoretical work that has been carried out in the field over the years. However the predominant conclusion of most of that work is that, particularly in the absence of oxygen and perhaps halogens, atomic hydrogen plays a crucial and decisive role in diamond CVD.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3