Stress Determination in Textured Thin Films Using X-Ray Diffraction

Author:

Clemens B.M.,Bain J.A.

Abstract

Thin film stresses are important in many areas of technology. In the semiconductor industry, metal interconnects are prone to stress voiding and hillock formation. Stresses in passivation layers can lead to excessive substrate curvature which can cause alignment difficulty in subsequent lithographic processing. In other thin film applications, stresses can cause peeling from mechanical failure at the film-substrate interface. Beyond these issues of reliability, stress and the resulting strain can be used to tune the properties of thin film materials. For instance, strain, coupled with the magnetostrictive effect, can be utilized to induce the preferred magnetization direction. Also, epitaxial strains can be used to adjust the bandgap of semiconductors. Finally, the anomalous mechanical properties of multilayered materials are thought to be partially due to the extreme strain states in the constituents of these materials. To fully optimize thin film performance, a fundamental understanding of the causes and effects of thin film stress is needed. These studies in turn rely on detailed characterization of the stress and strain state of thin films.X-ray diffraction and the elastic response of materials provide a powerful method for determining stresses. Stresses alter the spacing of crystallographic planes in crystals by amounts easily measured by x-ray diffraction. Each set of crystal planes can act as an in-situ strain gauge, which can be probed by x-ray diffraction in the appropriate geometry. Hence it is not surprising that x-ray diffraction is one of the most widely used techniques for determining stress and strain in materials. (For reviews of this topic, see References 5–7.) This article is a tutorial on the use of x-ray diffraction to extract the stress state and the unstrained lattice parameter from thin films. We present a handbook of useful results that can be widely applied and should be mastered by anyone seriously interested in stresses in crystalline thin films with a crystallographic growth texture.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3