Plasma-Immersion Ion Implantation

Author:

Mantese Joseph V.,Brown Ian G.,Cheung Nathan W.,Collins George A.

Abstract

Plasma-immersion ion implantation (PIII) is an emerging technology for the surface engineering of semiconductors, metals, and dielectrics. It is inherently a batch-processable technique that lends itself to the implantation of large numbers of parts simultaneously. It thus offers the possibility of introducing ion implantation into manufacturing processes that have not traditionally been feasible using conventional implantation.In PIII the part to be treated is placed in a vacuum chamber in which is generated a plasma containing the ions of the species to be implanted. The plasma based implantation system does not use the extraction and acceleration methods of conventional mass-analyzing implanters. Instead the sample is (usually) repetitively pulsed at high negative voltages (in the 2–300 kV range) to implant the surface with a flux of energetic plasma ions as shown in Figure 1. When the negative bias is applied to a conducting object immersed in a plasma, electrons are repelled from the surrounding region toward the walls of the vacuum chamber, which is usually held at ground potential. Almost all the applied voltage difference occurs across this region, which is generally known as a sheath or cathode fall region. Ions are accelerated across the sheath, producing an ion flux to the entire exposed surface of the work-piece. Because the plasma surrounds the sample and because the ions are accelerated normal to the sample surfaces, implantation occurs over all surfaces, thereby eliminating the need for elaborate target manipulation or masking systems commonly required for beam line implanters. Ions implanted in the work-piece must be replaced by an incoming flow of ions at the sheath boundary, or the sheath will continue to expand into the surrounding plasma.Plasma densities are kept relatively low, usually between 108 and 1011 ions per cm3. Ions must be replenished near the workpiece by either diffusion or ionization since the workpiece (in effect) behaves like an ion pump. Gaseous discharges with thermionic, radio-frequency, or microwave ionization sources have been successfully used.Surface-enhanced materials are obtained through PIII by producing chemical and microstructural changes that lead to altered electrical properties (e.g., semiconductor applications), and low-friction and superhard surfaces that are wear- and corrosion-resistant. When PIII is limited to gaseous implant species, these unique surface properties are obtained primarily through the formation of nitrides, oxides, and carbides. When applied to semiconductor applications PIII can be used to form amorphous and electrically doped layers. Plasma-immersion ion implantation can also be combined with plasma-deposition techniques to produce coatings such as diamondlike carbon (DLC) having enhanced properties. This latter variation of PIII can be operated in a high ionenergy regime so as to do ion mixing and to form highly adherent films, and in an ion-beam-assisted-deposition (IBAD)-like ion-energy regime to produce good film morphology and structure.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3