Wideband mid infrared absorber using surface doped black silicon

Author:

Sarkar S.1ORCID,Nefzaoui E.1ORCID,Hamaoui G.1ORCID,Marty F.1ORCID,Basset P.1ORCID,Bourouina T.1ORCID

Affiliation:

1. ESYCOM, Univ Gustave Eiffel, CNRS, F-77454 Marne-la-Vallée, France

Abstract

Black silicon (BSi) is a synthetic nanomaterial with high aspect ratio nano protrusions inducing several interesting properties such as a very large absorptivity of incident radiation. We have recently shown that heavily doping the BSi in volume enables to significantly enhance its mid-infrared absorptivity and tune its spectral range of interest up to 20  μm. In the present letter, we explore the effect of surface doping on BSi radiative properties and its absorptance in particular since surface doping enables reaching even larger dopant concentrations than volume doping but at more limited penetration depths. We considered 12 different wafers of BSi, fabricated with cryogenic plasma etching on n- and p-type silicon wafers and doped using ion-implantation with different dopant types, dosages, and ion beam energies, leading to different dopant concentrations and profiles. The different wafers radiative properties, reflectance, transmittance, and absorptance are experimentally measured using Fourier transform infrared spectroscopy. We show that doping an n-type BSi wafer with phosphorous with a dose of 1017 atm/cm2 and an energy of 100 keV increases its absorptivity up to 98% in the spectral range of 1–5  μm. We propose a simple phenomenological explanation of the observed results based on the dopant concentration profiles and the corresponding incident radiation penetration depth. Obtained results provide simple design rules and pave the way for using ion-implanted BSi for various applications, such as solar energy harvesting, thermo-photovoltaics, and infrared radiation sensing, where both high absorptance and variable dopant concentration profiles are required.

Funder

Agence Nationale de la Recherche

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal radiation at the nanoscale and applications;Applied Physics Letters;2023-11-27

2. A review of cost-effective black silicon fabrication techniques and applications;Nanoscale;2023

3. PASSIVE NIGHTTIME RADIATIVE COOLING USING BLACK SILICON;Proceeding of Proceedings of the 10th International Symposium on Radiative Transfer, RAD-23 Thessaloniki, Greece, 12–16 June 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3