Ductility of Nanostructured Materials

Author:

Koch C.C.,Morris D.G.,Lu K.,Inoue A.

Abstract

Ductility is defined as the ability of a material to change shape without fracture. It is of critical importance for engineering materials for both manufacturability and Performance. Measures of ductility include percent elongation (uniform plastic flow prior to mechanical instability—necking—or fracture) and percent reduction in area. Fracture toughness is also some measure of potential ductility. Engineering materials exhibit wide variations in ductility which can often limit their application.Ductility is a property of nanocrystalline materials which might be predicted to be enhanced by extrapolation of its grain-size dependence in conventional polycrystalline materials. It has been predicted that extrapolation of the grain size, or the scale of the microstructure, to the nanoscale will lead to both strengthening and an increase in ductility. As far as failure and ductility are concerned, this idea is based on experience with conventional materials, where the yield and fracture stress show different dependencies on the grain size. The fracture stress typically increases faster than the yield stress with decreasing grain size such that ductile/brittle transitions can occur. For example, the ductile / brittle transition temperature in mild steel can be lowered about 40°C by reducing the grain size by a factor of five. In terms of how ductility may be affected by the extreme grainsize reduction to the nanoscale, we consider the following. Firstly, it may be recalled that obtaining ductility relies simply on plastic deformation occurring without the catastrophic onset of failure mechanisms, and therefore we can examine possibilities of changing ductility in terms of avoiding failure.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3