Refractory Metal Nitride Encapsulation for Copper Wiring

Author:

Li Jian,Mayer J.W.

Abstract

Recent interest in copper-based metallization for ultra fast logic devices has stimulated extensive studies on thermal stability issues, as well as the search for novel deposition and etching processes. In copper wiring technology, thermal stability problems include: (1) rapid diffusion of copper into dielectric substrates, (2) low-temperature reaction with most near-noble metals and their silicides, (3) the susceptibility of copper to oxidation, (4) poor adhesion characteristics of copper on most dielectric materials, and (5) thermal-stress-induced void formation and cracking. The basic issues have been summarized in a recent review.When copper is in contact with a silicon substrate, copper can diffuse into active regions of devices where it becomes a recombination-generation center. In addition, copper forms the silicide Cu3Si by reacting with the substrate at temperatures less than 200°C. After the formation of the Cu3Si phase, the underlying silicon in the Cu3Si/Si structure is readily oxidized even at room temperature. In the case of copper in contact with silicon dioxide under bias thermal stress (BTS), copper is found at the SiO2/Si interface under a positive electric field. Copper diffusion in doped glass, e.g., phosphosilicate glass and silicon nitride films, is a factor at temperatures below 400°C.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3