Electronic-Structure Theory of Semiconductor Quantum Dots

Author:

Zunger Alex

Abstract

Progress made in the growth of “free-standing” (e.g., colloidal) quantum dots (see also articles in this issue by Nozik and Mićić, and by Alivisatos) and in the growth of semiconductor-embedded (“self-assembled”) dots (see also the article by Bimberg, Grundmann, and Ledentsov in this issue) has opened the door to new and exciting spectroscopic studies of quantum structures. These have revealed rich and sometimes unexpected features such as quantum-dot shape-dependent transitions, size-dependent (red) shifts between absorption and emission, emission from high excited levels, surface-mediated transitions, exchange splitting, strain-induced splitting, and Coulomb-blockade transitions. These new observations have created the need for developing appropriate theoretical tools capable of analyzing the electronic structure of 103–106-atom objects. The main challenge is to understand (a) the way the one-electron levels of the dot reflect quantum size, quantum shape, interfacial strain, and surface effects and (b) the nature of “many-particleinteractions such as electron-hole exchange (underlying the “red shift”), electron-hole Coulomb effects (underlying excitonic transitions), and electron-electron Coulomb (underlying Coulomb-blockade effects).Interestingly, while the electronic structure theory of periodic solids has been characterized since its inception by a diversity of approaches (all-electron versus pseudopotentials; Hartree Fock versus density-functional; computational schemes creating a rich “alphabetic soup,” such as APW, LAPW, LMTO, KKR, OPW, LCAO, LCGO, plane waves, ASW, etc.), the theory of quantum nano-structures has been dominated mainly by a single approach so widely used that I refer to it as the “Standard Model”: the effective-mass approximation (EMA) and its extension to the “k · p” (where k is the wave vector and p is the momemtum). In fact, speakers at nanostructure conferences often refer to it as “theory” without having to specify what is being done. The audience knows.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3