Control of the Microstructure of Al Metallization by Graphoepitaxy

Author:

Van Den Homberg Marc J.C.,Alkemade P.F.A.,Hurd J.L.,Leusink G.J.,Radelaar S.

Abstract

AbstractMicrostructure is an important factor determining the lifetime of Al metallization lines. Deposition conditions, substrate material, alloying elements, and anneal treatments are the key parameters that influence microstructure. In this work we explore the use of graphoepitaxy as a tool for additional control over the grain structure of metallization lines. Onto a submicrometer topography in SiO2 (viz., a large number of parallel grooves), a pure Al film is grown by dc magnetron sputtering, followed by an in situ rapid thermal anneal. The topography of the annealed Al is investigated by cross section SEM. It is observed that if it is heated up to its melting point, Al fills the grooves and leaves the ridges between the grooves uncovered. X-Ray Diffraction, TEM, and Backscatter Kikuchi Diffraction are used to determine the global as well as the local crystallographic orientation of the grains in the quenched aluminum. The analyses are performed for various anneal and cool down treatments. Depending on the treatment, the Al lines in the grooves are either polycrystalline with an almost perfect (111) texture, or single crystalline but with a gradual change of 0.067°/μm in orientation. In the latter case, there is no preferred orientation. The single crystalline Al lines will be used as a starting point for the fabrication of model systems for fundamental electromigration studies.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3