Author:
Crespillo M. L.,Sacedón J. L.,Joyce B. A.,Tejedor P.
Abstract
ABSTRACTThe effect of atomic hydrogen on the growth mode and surface morphology of GaAs(110) thin films grown by molecular beam epitaxy (H-MBE) has been studied for different kinetic regimes using atomic force microscopy (AFM). Growth in the Ga supply-limited regime after H-assisted oxide removal leads to the formation of multi-atomic step arrays by step bunching with a very uniform terrace size distribution in the 80 nm range. Growth under As-deficient conditions after H-assisted oxide removal induces a rapid self-organization of the GaAs(110) surface into a ridge pattern along the <001> tilt direction, which is broken down into a 3D mound morphology when H is also present during growth. A chacteristic nanofacetting of the surface with very straight <1–10> -type steps is observed at high temperatures regardless of atomic hydrogen being used during oxide desorption and/or epitaxial growth.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献