Author:
Okino Hirotake,Matsuda Hirofumi,Iijima Takashi,Yokoyama Shintaro,Funakubo Hiroshi,Yamamoto Takashi
Abstract
ABSTRACTElectric-field-induced displacements of PZT film capacitor Pt/PZT(5μm)/Pt/SiO2/Si(100) were calculated by finite element method with various parameters of sample geometry: the diameter of top electrode φ TE ranging from 0.2 μ m to 1000 μ m and whether PZT film was continuous or side-etched. If φ TE was larger than 40μ m, surface longitudinal displacement (corresponding to AFM-measured strain) was not equal to net longitudinal displacement of PZT film, including a contribution of the bending motion of substrate. In contrast, if φ TE was smaller than 4μ m and PZT film was continuous, effective d33 evaluated from net longitudinal displacement was smaller than intrinsic d33, because the side PZT film clamped the edge of the capacitor disk and prevented the whole disk from elongating longitudinally. It was also revealed that d33 value calculated from net longitudinal displacement of PZT film depended on the Poisson's ratio of PZT and was not equal to intrinsic d33, excluding the case that φ TE was smaller than 4μ m and PZT film was side-etched. In conclusion, it is suggested that smaller φ TE (< 4μ m, in our case) and side-etch treatment permit a precision measurement of d33; however this condition is difficult to be satisfied experimentally.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献