Abstract
AbstractWhile a-Si:H based elevated photodiode arrays hold the promise of superior performance and lower cost CMOS-based image sensors relative to those based upon crystalline silicon photodiodes, the one area where a-Si:H based sensor performance has not been as good is in image lag. This problem is only exacerbated by Staebler Wronski Effect induced junction degradation. Image lag is caused by residual charge from photocurrents trapped within the junction once the light source is removed and can be measured for several seconds, even under continuous applied reverse bias. It is seen both in constant and variable bias pixel architectures. However, by carefully controlling a-Si:H junction bias conditions, it is possible to significantly reduce these transient photocurrents. This article will describe how the photocurrent decay time exponent can be reduce by almost an order of magnitude. Finally the physical causes behind image lag in a-Si:H based photodiode arrays will be discussed.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献