Author:
Gross M. E.,Brown W. L.,Linnros J.,Harriott L. R.,Cummings K. D.,Funsten H. O.
Abstract
AbstractElectrically conducting palladium features have been produced by laser and ion beam irradiation of thin palladium acetate films. The photothermal reaction induced by scanned continuous wave Ar+ laser irradiation leads to metal lines that may exhibit periodic structure. This results from repeated propagation of “explosive” reaction fronts generated by coupling of the heat from the absorbed laser radiation with the heat of the decomposition reaction of the film. In contrast, 2 MeV He+ ion irradiation produces smooth metallic-looking features that contain up to 20% of the original carbon and 5% of the original oxygen content of the film. Films irradiated with 2 MeV Ne+ ions contain slightly lower amounts of carbon and oxygen residues, but fully exposed thick films (0.90 μm) appear black rather than metallic silver. In addition to having significantly higher purity, the laser-written features have lower resistivities than the ion beam-irradiated features. Infrared spectroscopy of the ion beam-irradiated films as a function of dose indicates a progressive loss in intensity of the characteristics acetate (COO-) vibrations. This occurs at doses lower than those associated with major C and O loss from the films. Partially ion-exposed films continue to decompose to metallic-looking material over a period of weeks after irradiation. Metallic palladium particles apparently catalyze this process.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献