Effects of Ion Dose and Irradiation Temperature on the Microstructure of Three Spinel Compositions

Author:

Wang L.M.,Gong W.L.,Bordes N.,Ewing R.C.,Feit Y.

Abstract

AbstractThree compositions with the spinel structure (γ-AIVB2VIO4), MgAl2O4, FeCr2O4 and γ-SiFe2O4, have been irradiated with 1.5 MeV Kr+ ions over a temperature range (20 to 873 K). In situ TEM and HRTEM afterwork were conducted to characterize the effects of the ion irradiation on the microstructure. MgAl2O4 was the most “radiation-resistant” among the three materials. After irradiation to lx1016 ions/cm2 at 20 K, the cations were completely disordered among all possible tetrahedral and octahedral sites, but the oxygen sublattice remained intact. At room temperature, a high density of dislocation loops developed after this same dose, but there was no evidence of cation disordering. However, γ-SiFe2O4, a spinel structure type, formed under high pressure (7.0 GPa), was easily amorphized at low ion doses (σ1014 ions/cm 2) below 723 K, even lower than required for radiation-induced amorphization of its olivine polymorph, fayalite (α-SiFe2O4; HCP). At 873 K, the amorphous phase recrystallized to magnetite (Fe2+Fe 3+2O4, an inverse spinel structure) and quartz (SiO2) during continued Kr+ irradiation. Chromite (ideally FeCr2O4) with an actual composition of (Fe0.6Mg0.4)(Cr0.7A10.3)2O4 amorphized at 6x1015 ions/cm2 at 20 K, a dose about 20 times as high as that required to amorphize most other AB2O4 phases under the same irradiation conditions. A structural parameter, which quantifies the deviation from ideal packing in the spinel structure was developed and correlates with themeasured doses required for amorphization among these three spinel compositions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3